AlAA-99-4339

A GENERIC OBJECT-ORIENTED IMPLEMENTATION FOR
FLIGHT CONTROL SYSTEMS

Patricia C. Glaab, Michagl M. Madden’

Unisys Corporation
NASA Langley Research Center
Mail Stop 125B
Hampton, VA 23681

Abstr actl]

This paper presents a design for a generic flight
control system (FCS) architecture that breaks the
control system into a coupled interaction of laws and
devices with a standardized method for execution.
Laws generally are computational components that
generate commands as outputs, and any number of
laws can be isolated and registered on a list in any
order for execution. Control devices are code
components that receive the command inputs and use
additional computations to generate device outputs,
such as the servoactuator positions for the control of
surfaces. Any number of devices are alowable for a
given flight control system and are registered in list
format for execution. This method allows for both
simplistic FCS implementations and highly complex
control systems without changing the architectural
requirements of the high level executive.

By separating the laws from the devices, special case
handling required for control law bypassing (such as
that required for direct-drive surface testing and
linear analysis) is easily handled at the execution
level. No specia code support is required internal to
the laws.

Introduction

This paper presents a method for structuring flight
control system code as part of an object-oriented
simulation framework. The design presented was
developed at NASA Langley Research Center by

Copyright (11998 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

1

Unisys Corporation for use within the Langley
Standard Real-Time Simulation in C++ (LaSRS++).
The goals for the original design included several
objectives. The first objective was to develop a
common software heirarchy that could effectively
handle FCS requirements for different styles of
aircraft. The parent classes for the elements would
reside in the simulation framework. Idedly, this
structure would simplify instalation of new FCS
models being added while providing a common
execution style that only required one documentation
effort.

A second objective was to alow speciad FCS
processing as part of the common executive.
Specifically, direct manipulation of surface positions
was required for linear analysis and open-loop
checkcase matching. This design was developed to
adlow this type of operation without embedding
special handling instructions in the aircraft-specific
FCS code.

To achieve the solution, an architecture was
developed that reduces a given FCS to a collection of
laws and devices and treats them as separate
components. Once this is done, the common
elements in seemingly unique control systems
becomes apparent. The flexibility of the system is
maintained through the use of variable length lists to
control the laws and devices. This method
effectively accommodates aircraft with varying
ranges of complexity and sizes of models.

Design Objectives

Aircraft that differ in both form and function
necessarily have unique technical requirements for
their flight controls. The differences between a
military fighter aircraft FCS and that of a commercial

American Institute of Aeronautics and Astronautics

transport at first inspection may seem more profound
than the commonality. Yet, in order to satisfy the
design goal, a methodology that serviced each style
effectively was required.

In this paper, the implementations of an F16A and a
Boeing 757 aircraft are used to demonstrate the
application of the final design to two very different
aircraft models. The F16A simulation model uses a
low-speed subset of that aircraft’s control laws. The
FCS outputs one signal for aileron, stabilator, leading
edge flap, speedbrake, and rudder as required to
interface to the supplied aerodynamics model. The
757 simulation model uses a full-envelope FCS
model and supplies surface deflections for left and
right ailerons, elevators, flaps, and dats, a single
rudder and stabilizer, and twelve spoiler deflections
as required for its aerodynamics model. The 757
uses a complex servoactuator model with hinge
moments, hydraulic system options, and variable rate
and position limits. The F16A uses a simple first-
order servo calculation with fixed rate and position
limiting. The F16A computes its commands to
surfaces using only a longitudinal, lateral, and
directional control law. The 757 aso uses laws for
the three axes, and additionally uses a high lift, a
spoiler, and a yaw damper control law. Yet both are
very effectively modeled using the architecture
described here.

The approach used in the design of this FCS
architecture was to ignore the specific type of
surfaces (or devices) and the intricacies of generating
the specific commands to drive them, and to reduce
the level of complexity to a group of laws that act
upon a group of devices. In this way, the software is
modeled similar to the actua aircraft. In an actua
aircraft, some combination of pilot inputs and
synthesized signals from a flight control computer are
fed to the control surface servos. The actual
deflection that results from the command may depend
on the current aircraft states or environmental
conditions, depending on the complexity of the
simulation model. The derivation of commands and
the surface movements can be treated as separate
entities.

Once this separation of laws and devices is made, the
similarities between very different styles of FCS
become quite apparent.

Laws
A control law isthe set of computations that provide

acommand as an output. Theinternal computations
may represent flight control computer modeling,

2

mechanical linkages, etc. Inputsto control laws are
generally pilot inputs from the cockpit and aircraft
state variables. The outputs are the commands to the
devices.

Control laws may be loosely or tightly coupled,
depending on the aircraft model. In avery smplistic
configuration (such as a general aviation aircraft
without any autopilot), the laws may be simply the
interaction of mechanical connections that transform
pilot command inputs into commanded force or
deflection outputs. In a more complex model, a
stability augmentation system or a flight control
computer may generate or modify commands.

This FCS class architecture design cares neither
about the number of laws used nor the internal
complexity. The parent ControlLaw class, which
resides in the genera framework, defines methods
required by client aircraft-specific control law classes
which inherit from it. By maintaining a variable
length list of laws, ControlSystem simply operates
upon each law registered to it at the referenced
location. In the C++ implementation, the aircraft-
specific FCS instantiates the laws required and
registers a pointer for each law during construction.

Control System contains a pure virtual function called
execute() which must be specifically defined by each
client control law. Making the method pure virtual
insures definition of the method within each client.
During FCS processing, the control system executive
steps through its list of registered laws and simply
calls the execute() method for each. Varying number
of control laws are accommodated for different
aircraft models with the same high level controller
code.

Devices

A device is a software representation of what would
be hardware on an actual airplane. Surfaces are the
primary type of device used, but a device can be any
aircraft component that augments the flight. Side-
thrusters would be another device example. Inputsto
devices are usualy a command signa and state
variables or environmental variables that effect the
device's movement. Most modern devices use some
type of servoactuators to achieve output deflections.

The flexibility for number and complexity of devices
is maintained similarly by a variable length list
maintained by the parent ControlSystem class. In the
C++ implementation, the aircraft-specific FCS
instantiates the number and type of devicesit requires
for its model and registers a pointer for each to the

American Institute of Aeronautics and Astronautics

device list at construction time. The ControlDevice
parent class, from which all control devices inherit,
contains a pure virtual method called drive() which
must be defined by each client device class. During
execution, the Control System executive steps through
its list of devices and calls the drive() method for
each.

M odeling of Common Behaviors

The computational behaviors common to FCS code
structure and execution are also contained within the
parent ControlSystem class. Every FCS must provide
inputs to its laws, execute the laws, provide inputs to
its devices, and drive them. In the standard
execution, these are done by the Control System class.
The ControlSystem, from which the aircraft-specific
FCS inherits, defines the pure virtua methods
directlnputsToControl Laws() and
directinputsToControlDevices(). These must be

Acrall ControlLaw

ﬂe‘uaualeﬁ

B737 LongibudinallLaw

Bevaluate()

BT3TLaterallaw

Bevalate()

BT3TDarectionallaw

¥-valuate()

BT3T

redefined by each airplane to fit the its own unique
requirements.

Additionally, the methods evaluateControlLaws()
and driveControlDevices() are defined within the
parent ControlSystem class and contain the code to
step through the list of laws and devices. These need
not be refined at the aircraft-specific level. They are,
however, virtual methods that may be redefined if
some unusual execution isrequired.

One other method is provided as virtual by the
Control System class for use at the client’s discretion.
The compositeDeviceCalculations() method is
provided to compute combinations of device outputs
required for other systems in the simulation. For
example, in the 757 aircraft, this method is used to
compute dlat_average and elevator_differential
which are exported to the aerodynamics model and
the data recording model.

ContralSystem
Bcomrol_laws
ontrod_devices

ControlDevice

Wrive
BapplyControls() g
Baivectinputs ToControlLaws()
Bevaluate ControlLaws()
@aﬂi&tlnwlﬁinmuulﬂm@cesﬂ
BariveControlDevices()
BcomposieDeviceCalculationsd)

SimpleServoSurface

%ﬁ'ﬂ'el:l
BISTControdSystem 4
Sstabilator 1
Baieron
Eieading_edge_ﬂap
Bispeedbrake
sdder 1 1

F16aStabilabor
Barnive)

Bavectinputs ToControlLaws()
B directinputs ToControlDevices{)
BcomposieDeviceCalcuations(}

Figure 1- 757 FCS Class Structure

Execution Options

Since this methodology was developed to support
special processing requirements for linear analysis
and open loop checkcase matching, alternate
processing flexibility was built into the architecture

at the parent class level. A flag is provided by the
ControlSystem class called open_loop. When the
open_loop flag is set true, an alternate method of
execution is followed. During open-loop processing,
execution is defined in its entirety by the client
aircraft control system via a virtual method called

3

American Institute of Aeronautics and Astronautics

useTrimCommandsAsResponse(). Within the client’s
version of this method, commands or deflections can
be directly assigned as necessary for specia
handling. The executive section is simply defined in
useTrimCommandsAsResponse(), and the open_loop
flag set true.

Inheritance Structure

Figures 1 and 2 show the inheritance structure for the
757 commercial transport and the F16A military
fighter within the generic FCS architecture. The top-
most boxes on each diagram represent the framework
classes: ControlSystem, ControlDevice, ControlLaw
and Aircraft. Here the B757 executive class, which
inherits from Aircraft, has 21 control surfaces and 5

Arcralt ControlLaw

[Iuated)

BT57LongitudinalLaw

Bovaluated)
R757HighLiftLaw
Boyaluated)

Bi57Laterallaw
ey abuate)
B727SpoilerLaw

Bevaluate)

B75TDirectionallaw

Bavaluate()

BI&7

control laws to generate its model. The F16A, by
comparison, only uses three control laws and five
control surfaces to define its FCS model. The pure
virtual methods, evaluate() and drive(), initialy
defined in the ControlLaw and ControlDevice classes
respectively, are redefined in the aircraft-specific
classes which inherit from them. Pure virtual classes
directlnputsToControl Devices() and
directinputsToControlLaws(), initially defined in
ControlSystem, are redefined for the aircraft-specific
control system classes. Since each aircraft requires
combined surface outputs, each redefines the
compositeDeviceCalculations() method. Neither,
however, defines evaluateControlLaws() or
driveControlDevices() which are handled entirely by

the parent class, Control System.

ContrelSystem

ControlDevica

B iyContrals()
irectinpuls ToControll aws ()
BevaluaieControll aws()
Fdirectinputs ToConrolDevices()
riveConirol Devices()
-ompositeDeviceCalculationsi)

-driu'Ell]

10 | BoeingSpoilar

BT57ControlSystem

Blef_elevator

ight_edevator

lelt_aileran
Eright_aileron
Baft_flaps
H’ig ht_faps
nleft_slar_q
Bright_slats

udder
Bsiabilizar
B8=poiler{12]

-dira:llnpul-sTUCunLrulLamU
irectinputs ToConrolDevices()
FcompositeDeviceCalculations()

Figure 2 - F16a FCS Class Structure

4

American Institute of Aeronautics and Astronautics

Bdrive()
12

BoeingContralSurface

.drn.rE{l

Object Interaction

Figure 3 and 4 show the interaction of the objects
during closed-loop operation for the Boeing 757 and
F16A aircraft smulations. At construction time, the
client control system instantiates the number and type
of laws and devices it requires and registers a pointer
to each to the list of laws contained in Control System.
The order of registration dictates the order of
execution used later for each law and device by the
ControlSystem class. The client aircraft, as part of its

execution process, tells ControlSystem to
applyControls(). The applyControls() method within
ControlSystem calls directlnputsToControlLaws(), a
pure virtual method defined at the client control
system level. The directinputsToControlLaws()
method in the client control system sets inputs
required for each control law that it uses. This input
processing usually involves gathering state variables
from other parts of the client aircraft and sending
them to the passive control law objects.

Conral Siystest

braiagil ftlan ocaleslampiss 0 oo Bl

eievalon_right |

=

registerConuolLas(tocal lang e

[}

7

registesConirilaw(locsl, lat. laws)

[}

| regislesConirolt s ocel. high B lany

| registesConiroll s ocal, yans_damp.)

registeCanmollesicef devslnr i)

registesContoilevice(Hevalor_ rght).

mﬁ!ﬁs

| dtinpursToConroil et})7
inputsTolamgundinai(y_|
inputsTol sexsif -l
inputsToliwecional] | |
inpusToliresionzl] | |
inputsTolirecionz{)
|| evalusteControll s

e il 2

evalute) 1

e

evahets()

evaluate() 1

deecitapuisToContmilssees]
inputsToE ecacl el
inpussToEleaonraghad) | |
inputsToRuddes()

evahsl=Controllsas(

el

dived U 1

]

5

American Institute of Aeronautics and Astronautics

Figure 3 - 757 Object Interaction Diagram

|F1E:ch-ntc-L§_-.-sbem| |F1Eangib.|dhalLaw||F1E:uLaH'aILaw| |F“IEaD'rectic-nalLa-.w| |Si'npb3erm3.|rhoe ”F‘IEaSlabihbr

reqgis erCon bo lLaw T B _ lorag_law]

regis kerCon ro lLaw T Gl_kt_kRw]

regis ke Con o lLaw T Ba_dir_kw)

_r.eg's erCon ko |DeviceMaileron)

regis kerCon o [DeviceMrudder]

regis kerCon ko [DeviceMskbikbar]

directihputsToConro lLaws(

npukTalongitsdinal

inputsTo Lo erall

npuksTao Drectiora |

| ewbmeConrollaws)

e bmel
bkl

avaliabe])

directinpu keToConro IDevices(]

npukTalilkrand

npukTaRuddar ()

npukToSehiktorl

v breCon o lLawes

drive -
drivel] -
dri'.»LI:I -
Figure 4 - F16A Object Interaction Diagram
The applyControls() method then calls method within the clients control laws or in local

evaluateControlLaws() which simply steps through
its list of control laws and calls evaluate() for each.
The evaluate() method is defined in the parent
ControlLaw class as a pure virtua function, and must
be redefined by each specific control law that inherits
from it. All technical code required to compute the
command output is contained in the evaluate()

6

scope methods called by it.

Similar processing is then performed by the
ControlSystem class for device calculations. The
directinputsToControlDevices() method is defined at
the client control system level and sets inputs
required for each control device used. This input

American Institute of Aeronautics and Astronautics

processing usually involves gathering commands
from the control laws and additional aircraft state
variables from other simulation objects and updating
the input data within each device object.

The driveControlDevices() method in Control System
is called which steps through the list of registered
devices and instructs the drive() method to be
executed for each one.

Finally, the compositeDeviceCalculation() method is
called to compute required output combinations for
other parts of the simulation.

Note that even though the number and type of laws
and surfaces differ for the two aircraft, the execution
methodology and the code structure for the classes
remains the same.

Conclusions

The initial design and testing phase for this flight
control system architecture (as is usua for
sophisticated and reliable object-oriented
development), required a substantial effort on the part
of the developer. This method was first used for the
757 simulation model. Before this architecture was
installed, the 757 FCS code was encumbered with
switch statements and branch “if” testing because of
the extensive amount of special processing required
for that particular project. The code was very fragile
and had become amost indecipherable. After the
757 control system was revamped to fit this generic
method, the code was highly robust and instantly
comprehensible by anyone willing to familiarize
themselves with the architecture.

Since its inception, three other aircraft have used the
architecture with extensive time saving both in
testing and validation of the code and in the design
review documentation requirements. Testing and
coding for these aircraft was practically limited to the
installation of their technical equations and inputs to
them. Linear analysis capability was effectively free.

The development effort was easily justified in this
instance, if not absolutely required, for the 757 model
to be maintainable through its projected life span.
Smaller control systems that capitalized on the effort
would probably not have expended the initia
development effort unless a large amount of special
processing was expected in that project’slife.

A common method of class structure and execution
for a framework, however, is a large motivator.
Installation and testing of control systems, previously
handled exclusively by experienced simulation
developers, is now effectively accomplished by

7

relatively new developers in the LaSRS++
framework. The conclusion is that the initial testing
and development effort is highly recommended for
severa situations:

- when the complexity of one particular model
compromises the code’ s readabilty

- when many aircraft share acommon framework

- when the responsibility for code maintenance
will be handled by changing personnel over the
project’slife span

Bibliography

[1] Erich Gamma, Richard Helm, Raph Johnson,
and John Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software.
Addison-Wed ey, Reading, Massachusetts, 1995.

[2] Steve McConnell. Code Complete: A Practical
Handbook of Software Construction. Microsoft
Press, Redmond, Washington, 1993.

[3] Terry Quatrani. Visua Modeling With Rational
Rose and UML. Addison-Wedey, Reading,
MA, 1998.

[4] Scott Meyers. Effective C++. Addison-Wesley,
Reading, Massachusetts, second edition, 1998.

[5] Grady Booch. Object-Oriented Analysis and
Design. Benjamin/Cummings, Redwood City,
Cadlifornia, 1994.

[6] R. Ledie, D. Geyer, K. Cunningham, M.
Madden, P. Kenney, P. Glaab. LaSRS++: An

Object-Oriented Framework for Rea-Time
Simulation of Aircraft. AlIAA-98-4529,
Modeling and Simulation ~ Technology

Conference, Boston, MA, August 1998.

American Institute of Aeronautics and Astronautics

	AIAA-99-4339
	A GENERIC OBJECT-ORIENTED IMPLEMENTATION FOR FLIGHT CONTROL SYSTEMS
	Laws
	Devices
	Modeling of Common Behaviors
	Execution Options
	Inheritance Structure
	Object Interaction
	Conclusions

