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Abstract* 

This paper presents an Object-Oriented Design for 
modeling sensors, and their associated errors and 
failures.  By applying Object-Oriented techniques to the 
modeling of sensors, a generic sensor model and a 
sensor system to manage the sensors were created.  
Using this design, the process of adding new sensors at 
any location on the aircraft, taking into account the 
changes in dynamics at a point other than the center of 
gravity, has been greatly simplified.  This design also 
includes a comprehensive set of methods for 
implementing errors and failures that can be applied to 
any sensor. 

Introduction 
The Object-Oriented1 Sensor and SensorSystem classes 
were designed to provide a generic method for aircraft 
simulations to model sensors and failures, as well as 
provide a simplified way to obtain changes in sensor 
inputs based on the location on the aircraft.  The design 
presented in this paper is currently used at NASA 
Langley Research Center in the Langley Standard Real-
time Simulation in C++ (LaSRS++) framework.  This 
design allows any aircraft or vehicle in the LaSRS++ 
framework to easily create a sensor system to manage 
sensors at specified locations and apply failures.  The 
interface provided by the sensor system, settings 
available for each sensor, and large number of sensor 
failure modes available allow aircraft to easily simulate 
sensors with a large degree of flexibility. 
 
The main classes used to implement this design include 
a SensorSystem, Sensor, DynamicsAtPoint, and 
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FailureMode class.  These classes are discussed in more 
detail in the LaSRS++ Sensor Classes section below. 
 
The SensorSystem class is the interface between the 
aircraft and the sensors.  It maintains a list of all sensors 
for the aircraft, calculates the dynamics at the sensor 
locations, and allows sensor failures to be activated.  
Sensors are modeled using the Sensor class.  The 
location of the sensor may be specified so that effects 
due to the location of the sensor relative to the center of 
gravity may be simulated.  The effects due to the 
location of the sensors are calculated using the 
DynamicsAtPoint class.  
 
The Sensor class computes an output, the sensor signal, 
based on an input signal, errors, and failures using 
several internal methods. Available errors include a 
scale factor, constant bias, random bias, and random 
noise.  The sensor can also implement a sampling rate 
and can use a first and/or second order filter to model 
the sensor behavior. The FailureMode class is used by 
the sensor class to model sensor failures. 
 
The FailureMode class allows the user to select from a 
list of failure types that influence the sensor signal.  The 
failed output value is based on the selected failure type. 
 
The DynamicsAtPoint class allows for the calculation 
of position, orientation, velocity, angular velocity, 
acceleration, and angular acceleration at a sample point 
given the same values at a reference point and the 
distance from the reference point to the sample point. 
 
Through the use of the SensorSystem, Sensor, 
DynamicsAtPoint, and FailureMode classes, this design 
allows any aircraft or vehicle in the LaSRS++ 
framework to easily create a sensor system to manage 
sensor models and sensor failures.  
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LaSRS++ Sensor Classes 
The following classes were used in the LaSRS++ 
Sensor System implementation.  The main classes 
include DynamicsAtPoint, Sensor, FailureMode, and 
SensorSystem.  Some of the other classes mentioned in 
the following sections, or in the Unified Modeling 
Language (UML) diagrams 2 , are discussed in the 
Miscellaneous Classes section.  Figure 1 shows the 
LaSRS++ Sensor System class overview. 

DynamicsAtPoint 
The DynamicsAtPoint class was created to allow for the 
computation of vehicle dynamics at a point other than 
the center of gravity; or any other point at which the 
position, orientation, velocity, angular velocity, 
acceleration, and angular acceleration are known.  
Figure 2 shows the UML diagram for the 
DynamicsAtPoint class.  The class makes use of three 
main points, a reference origin, reference point, and 
sample point.   
 
The reference origin is the origin point of the reference 
frame.  The reference origin for most aircraft is the 
reference center of gravity.  This origin point should 
always be at a fixed point on the aircraft. 
 
The reference point is the point at which the dynamic 
inputs (velocity, acceleration, etc.) are known, typically 
the center of gravity (CG).  This point is specified 

relative to the reference origin in the reference frame 
coordinate system.  The reference frame coordinate 
system will typically be the body frame. 
 
The sample point is the point at which the dynamic 
inputs will be translated.  It can be specified as a 
distance from the reference origin or the reference point 
in the reference frame coordinate system. 
 
The equations, listed below, assume that the frame is 
rigid, and therefore do not take into account rotations or 
accelerations of the sample point frame relative to the 
reference frame.  The class allows the ability to specify 
an extra coordinate frame rotation from the reference 
frame to a frame used in the position calculation.  This 
has no affect on the calculation of the orientation, 
velocity, acceleration, angular velocity, or the angular 
acceleration at the sample point.  This extra frame 
rotation was added to allow the position calculation to 
be used in a different frame than the other calculations.  
For example, the position calculation is computed in 
either world relative coordinates or relative to a 
geographic reference point by the SensorSystem class. 

 
For the LaSRS++ Sensor System, the reference origin is 
located at the reference CG.  The body frame is used as 
the reference frame.  The reference point is kept at the 
CG and the sample point is fixed on a specified point 
on the aircraft (discussed further in the SensorSystem 
section). 

Figure 1 Class Overview 
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Sensor 
The Sensor class is used to model a sensor and provides 
a wide assortment of ways to model any associated 
errors of a particular sensor.  It outputs a sensor signal 
as a function of an input value and any errors or failures 
that are set.  Available errors include a scale factor, 
constant bias, random bias, and random noise.  The 
sensor can also have a sampling rate, failure modes, and 
can use a first and/or second order filter to form the 
sensor output.  Figure 3 shows a UML diagram of the 
Sensor class. 
 
The scale factor introduces a scaling error.  A constant 
bias adds a constant, non-random bias to the sensor 
signal.  A random bias allows a mean, standard 
deviation, and random number seed to be specified to 
add a random (gaussian distribution) bias to the sensor 
signal.  A random noise allows a standard deviation, 
lag, and random number seed to be specified.  The 
noise has a gaussian distribution with a zero mean and 
has the standard deviation specified.  The lag is used to 
implement a first order Markov process to simulate the 
noise spectrum for the sensor model. 
 
The sampling rate can be used in order to update a 
sensor slower than the simulation rate.  The first and 
second order filters can be used to create the desired 
sensor model, introducing lag, phase shift, or oscillation 
to the sensor input. 
 
Sensor failures are implemented using the FailureMode 
class. 

FailureMode 
The FailureMode class, shown in Figure 4, modifies an 
output value based on a selected failure mode, if any.  
There are nine basic failure types and six random 
failure types.  The basic failure types are no fail, fail 
zero, fail frozen, fail high, fail low, fail reverse, fail 
bias, fail cycle, and fail random.  The random failure 
types are random zero, constant interval zero, random 
glitch, constant interval random glitch, constant interval 
constant glitch, and constant random noise. 
 
The no failure mode passes the input through without 
any failure.  Fail zero always returns zero as the output.  
Fail frozen returns the previous output value.  Fail high 
returns the maximum value of the output.  Likewise, 

Figure 2 DynamicsAtPoint Class Diagram 

Figure 3 Sensor Class Diagram 
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fail low returns the minimum value of the output.  Fail 
reverse returns the input value with the sign changed.  
Fail constant returns a user specified constant value.  
Fail bias returns the input value plus a constant bias.  
Fail cycle ramps the output constantly and limits the 
output by rolling over from minimum to maximum or 
visa versa.  Fail random returns an output based on the 
random failure types selected.   
 
When the basic failure type is set to fail random, the 
FailureMode class will base the output on the random 
failure type selected.  The random zero failure returns a 
zero (dropout) at random time intervals.  The constant 
interval zero failure outputs zero at specified periodic 
intervals.  The random glitch failure outputs random 
values at random intervals.  The constant interval 
random glitch failure outputs random values at 
specified periodic intervals.  The constant interval 
constant glitch failure outputs a specified error value at 
specified periodic intervals.  The constant random noise 
failure outputs random noise. 
 

In addition to the failure modes and random failure 
types, the user may specify a persistence time and 
whether or not to ramp to the target value at a specified 
ramp rate.  The persistence time specifies how long the 
output of a random failure is held while failing.  The 
ramp to target can be used to gradually ramp the output 
value to the target value, dependent on the failure 
mode, at a specified rate. 

SensorSystem 
The SensorSystem class, shown in Figure 5, keeps track 
of sensors and sensor positions by using the Sensor and 
DynamicsAtPoint classes.  When constructed, the 
SensorSystem class requires the number of sensors, 
location of the reference center of gravity in the sensor 
reference frame, and a rotation matrix from the sensor 
reference frame to the body frame to be specified.  The 
sensor reference frame can be any frame, although for 
most aircraft this will be either the Airplane Reference 
System (ARS), specified by a Body Station, Butt Line, 
and Water Line, or centered at the reference CG.  The 
reference CG is assumed to not move relative to the 
aircraft during a simulation run. 
 
Sensors are registered to the system through one of the 
registration methods.  These methods allow a sensor to 
be registered with or without a position specified.   
 
When a sensor is registered without a position using the 
registerSensor() method, no DynamicsAtPoint instance 
is created for it.  Registration without a position is 

typically done for a sensor that is at the same position 
as another sensor, always located at the CG (unrealistic 
as it may be), or if the sensor already computes an input 
based on a position and does not wish the sensor system 
to handle the position shift.  Registration with a 
position is done through the registerSensorAtPosition() 
method. 
 
Registering a sensor with a position, specified in the 
sensor reference frame, allows the SensorSystem class 
to compute the position, orientation, velocity, etc. at the 
sensor location.  An optional argument when registering 
the sensor at a specified position allows a Geographic 
Reference Relative Info Handle (GeoRefRelInfo-
Handle) to be specified.  The GeoRefRelInfoHandle 
class allows calculations to be done for the aircraft 
relative to a fixed point on the ground, such as a 

Figure 4 FailureMode Class Diagram 
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navigation transmitter or runway threshold.  The sensor 
must also specify whether or not the velocity computed 
is air-relative, to include wind velocity, or body 
relative. 
 
If two sensors are located at the same position, the 
linkSensors() method can be used to ensure the 
dynamics calculated for one sensor are the same for all 
sensors that are linked to it.  Linking sensors is done to 
save some computation time by only updating one 
DynamicsAtPoint instance for each sensor location on 
the aircraft, instead of updating one for each physical 
sensor. 
 
The update() method is used to update all of the 
DynamicsAtPoint instances for the sensor position 
specified.  The values computed at the sample points 
are then used to calculate the inputs to the individual 
sensors. 
 
The SensorSystem updates the individual DynamicsAt-
Point instances differently if a GeoRefRelInfoHandle 
was specified for the corresponding sensor during 
registration.  If the handle was specified, the reference 
point position is calculated relative to the geographic 
reference point, otherwise the position is calculated in 
world relative coordinates.  The SensorSystem class 
provides a method for computing the latitude, 
longitude, and altitude of a point given in world relative 
coordinates using the same world shape data as the 
simulation.    The orientation is input as the local frame 
to body if a GeoRefRelInfoHandle was specified, 
otherwise the orientation is input as the rotation angles 
from local vertical to body. 
 
None of the other reference point inputs to the 
DynamicsAtPoint instances are dependent on whether 
or not a geographic handle was provided. Air relative 
velocities or body velocities are input for the velocity 
input based on whether the sensor specified that it 
wanted air relative velocities or not when it was 
registered.  The inertial acceleration of the aircraft in 
body coordinates minus gravitational effects is used as 
the acceleration input.  The body angular velocity and 
angular acceleration are used for the angular velocity 
and angular acceleration inputs. The position of the 
reference point is updated based on the current location 
of the CG relative to the reference CG. 
 
Once all of the DynamicsAtPoint instances have been 
calculated, the calculateSensorInputs() method is 
called.  This method allows the aircraft specific sensor 
system to calculate the inputs to the sensors based on 

the dynamics that have been calculated at the sensor 
locations.  For example, an alpha (angle of attack) 
sensor would use the body x and z components of the 
air-relative velocity at the sensor location to compute 
the local angle of attack.  A Global Positioning System 
(GPS) receiver would use the world relative position 
calculated, when registered without a geographic 
handle, to compute the latitude, longitude and altitude 
at the sensor location.  A glideslope receiver would use 
the position relative to the transmitter, by using the 
transmitter as the geographic handle when registered, to 
compute the glideslope angle as seen by the receiver. 

Miscellaneous Classes 
This section discusses some of the classes that are used 
by the sensor system design, but are not otherwise 
described in this document. 
 
The SimulationModel class is the base class for all 
models in the simulation.  Its main purpose is to 
standardize the way models initialize and to allow 
access to a simulation mode and timer. 
 
The simulation mode is used to determine what state 
the simulation is in.  These states include reset, trim, 
hold, and operate. 
 
The simulation timer is implemented with the Timer 
class.  The Timer class is used for various timing 

Figure 5 SensorSystem Class Diagram 
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functions.  It is often used when a class needs to keep a 
separate timer from the main simulation timer. 
 
The VehicleSystem classes manage communications 
between an aircraft and the simulation models of its 
components.  They are responsible for calculating and 
passing the expected inputs into the simulated 
components.  They are also responsible for retrieving 
output from the component and manipulating it into the 
data that the aircraft expects.  For example, the 
ControlSystem class derives from VehicleSystem.  The 
control system gets sensor outputs from the sensor 
system (another class that derives from VehicleSystem) 
and passes them to a control law. 
 
The Aircraft class is the aircraft object being simulated. 
 
The Vector<double> template class is simply a three 
element array of doubles.   
 
The Vector<AngularValue> template class is similar to 
the Vector<double> template class, but contains an 
array of angular values.  Angular values are doubles 
that contain information about an angle and can return 
their value in either degrees or radians. 
 
The EulerAngles class is a storage class for standard 
Euler angle orientations 
 
The RotationMatrix class is used to perform coordinate 
rotations between different coordinate frames. 
 
The GaussRV class is used to generate random values 
in a Gaussian distribution.  The class allows a seed, 
mean, and standard deviation to be defined. 
 
The UniformRV class is used to generate random 
values in a uniform distribution.  The class allows a 
seed, minimum, and maximum value to be defined. 
 
The StableFirstOrderFilter class implements a first 
order filter with additional checking to make sure the 
digital, z-transform, implementation of the filter is 
stable.  If the time step is greater than 2τ, where τ is the 
filter time constant, the digital implementation of the 
filter is unstable. If the filter is unstable the filter will 
always return the steady state output for the filter. 
 
The StableSecondOrderFilter class is similar to the 
StableFirstOrderFilter class except it implements a 
second order filter.  
 

The GeodeticCoordinates class is used to specify 
positions relative to a reference ellipsoid as coordinates 
of latitude, longitude, and altitude. 
 
The GeoRefRelInfoHandle class provides calculations 
and accessors for individually selectable position, 
velocity, and acceleration data of an aircraft relative to 
a geographic reference point (GeoRefPoint), for 
example, a navigation transmitter or runway threshold. 
 

Results 
In this section, example sensor placement and sensor 
errors are demonstrated.  Figure 6 through Figure 10 
show the dynamics of the aircraft at the CG for the 10 
second run. 

GPS Receiver 
In this example, a GPS receiver is placed 50 feet 
forward and 20 feet up from the reference CG.  Figure 
11 through Figure 13 show the latitude, longitude, and 
altitude of the center of gravity versus the sensor 
position. This example includes no sensor errors or 
dynamics. 
 
The GPS sensor outputs are affected only by the 
orientation of the aircraft and the latitude, longitude, 
and altitude of the CG.  The aircraft begins heading 
north at 10,000 feet.  During the 10 second run, the 
difference in latitude remains small, with the sensor 
remaining slightly north of the CG (Figure 14).  The 
minimum difference between the sensor and CG 
latitudes occurs around 5 seconds when the pitch and 
yaw are at their maximum values, and the aircraft is 
rolled somewhat.   
 
The longitude remains the same until shortly after 2 
seconds when the aircraft heading changes (Figure 15).  
As the aircraft starts to turn east, the sensor reads a 
longitude slightly east of the CG.   
 
The sensor altitude changes between approximately 25 
and 38 feet higher than the CG throughout the run 
(Figure 16).  The primary contribution to the change in 
altitude is the pitch angle, with the roll angle having a 
smaller adverse affect on the relative altitude. 

Accelerometer 
In this example, an accelerometer triad is placed 80 feet 
forward and 2 feet down from the reference CG.  Figure 
17 through Figure 19 show the sensed accelerations at 
the center of gravity versus the sensor position. This 
example includes no sensor errors or dynamics. 
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The body x axis accelerometer follows similar trends to 
the acceleration at the CG (Figure 17).  The difference 
in the sensed acceleration between 2 and 4 seconds is 
primary due to the yaw rate peak.  The yaw rate term 

adds an additional -2.5 foot per second 
squared of acceleration at just past 3 seconds.  At 5 
seconds, a small spike appears because of a jump in the 
body pitch acceleration. 
 
The body y axis accelerometer is shown in Figure 18.  
The primary effect on the side acceleration is due to the 
large roll rates between 2 and 5 seconds. 
 
The body z axis accelerometer is shown in Figure 19.  
The difference between the sensed and CG 
accelerations is due primarily to the pitch acceleration 
and the product of the roll and yaw rates.  The spikes in 
acceleration at 1 and 5 seconds are primarily caused by 
the pitch acceleration. 

Alpha Sensor 
In this example, an angle of attack sensor is placed 5 
feet aft and 60 feet to the right of the reference CG.  
Figure 20 shows the angle of attack at the CG, as well 
as the computed angle of attack at the sensor position.  
The angle of attack at the sensor position is calculated 
based on the air-relative velocity components calculated 
at the sensor position.  This example includes no sensor 
errors or dynamics. 
 
The sensor output was obtained by calculating the angle 
of attack using the body x and z axis velocities from an 
instance of the DynamicsAtPoint class.  The angle of 
attack calculated at the sensor position was then passed 
as the input to the sensor.  The primary difference in the 
angle of attack at the CG and the sensor position is 
caused by the body roll rate. 

Alpha Sensor with Errors and Model Dynamics 
This example copies the example above (Alpha 
Sensor), and adds a first order filter with a time 
constant of 0.025 seconds, a constant bias of 0.2 
degrees, and noise.  The noise is modeled with a 
standard deviation of 0.1 degrees, a lag of 0.03 seconds. 
 
Figure 21 shows the difference in the sensor outputs 
between the previous sensor output with and without 
the errors listed above. 

Alpha Sensor with Failures 
This example duplicates the example above (Alpha 
Sensor with Errors and Model Dynamics) plus the 
implementation of some failures.  The failures include a 

fail high at 2 seconds, a fail frozen at 4 seconds, and a 
fail random/random zero failure at 6 seconds.  The fail 
high and fail frozen failures each last 1 second.  The fail 
random is held until the end of the sampling period.  
The sensor has a maximum value of 50 degrees, a 
minimum of –10 degrees, ramp to target enabled with a 
ramp rate of 20 degrees/sec, and an error persistence 
time of 0.0125 seconds. The random time interval was 
set to cause errors to repeat between 0.025 and 0.7 
seconds.  
 
Figure 22 shows the effects of adding the failures listed 
above, and the errors from the previous example to the 
alpha sensor output. 
 

Conclusions 
The Sensor and SensorSystem classes implemented in 
the LaSRS++ framework provide a flexible framework 
for the implementation of sensor models.  Through the 
use of the SensorSystem, Sensor, DynamicsAtPoint, 
and FailureMode classes, the user has been given a 
well-featured framework to model sensors.  These 
sensor models may be placed at any point on the 
aircraft to include the effects of the position relative to 
the center of gravity into the input of the sensor.  The 
sensor models have the added ability to implement 
sensor dynamics, add errors to the sensor signal, and 
fail the sensor. 
 

Future Work 
Additional features that could be useful to the sensor 
system include the ability to remove the assumption 
that the aircraft is a rigid body.  This can be 
accomplished by deriving a class from the Dynamics-
AtPoint class that can add in the effects of movement 
and orientation changes of the sample point frame to 
the calculations done in the DynamicsAtPoint class.  In 
this way, an angle of attack sensor could be added to a 
wing flapping model to take into account the effects of 
a non-rigid wing on the sensor reading. 
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Figure 6 Euler Angles 

Figure 7 Velocity Components 

Figure 8 Angular Velocities 

Figure 9 Acceleration Components 

Figure 10 Angular Acceleration 
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Figure 11 GPS Latitude 

Figure 12 GPS Longitude 

Figure 13 GPS Altitude 

Figure 14 GPS Latitude Difference 

Figure 15 GPS Longitude Difference 

Figure 16 GPS Altitude Difference 
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Figure 17 X Accelerometer 

Figure 18 Y Accelerometer 

Figure 19 Z Accelerometer 

Figure 20 Angle of Attack 

Figure 21 Angle of Attack with Errors 

Figure 22 Angle of Attack with Errors and Failures 
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